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this channel. The state D5/2 is suggested for this reso­
nance. If this assignment is correct the question arises 
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FIG. 6. A possible connec­
tion between the trajecto­
ries of 2 and 1765-MeV Fx*. 

as to where the first recurrence of this trajectory with 
spin \ is. From the slopes of the other trajectories and 
from the fact that there is no particle between 1190 and 
1765 MeV with the quantum numbers of this resonance 
one would expect its trajectory to lie higher than 2J 
trajectory. But also below 1190 MeV there is no particle 
with the quantum numbers of this resonance. Thus we 
are faced with the alternative that the odd parity 
trajectory crosses the spin \ line in the positive energy 
region thus having the wrong region for the odd tra­
jectory and having the wrong slope for the even trajec­
tory. A wrong slope would give a negative width and 
would not correspond to a particle. This possibility is 
shown in Fig. 6. 
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A dispersion theoretic approach to two-body weak decays is discussed in which the masses of the particles 
are regarded as constants. In this approach, an analyticity assumption is introduced for the invariant decay 
amplitudes which are defined off the energy-momentum shell. These amplitudes are invariant functions of 
three invariant variables. The singularities and the dispersion relations for these amplitudes are very similar 
to those assumed by Mandelstam in the case of scattering. As examples, the pionic decays of hyperons and 
the leptonic decays of pions and kaons are discussed in detail in the first order with respect to the weak 
Hamiltonian. It is assumed in the present approach that there exists a weak Hamiltonian which is localized 
in the sense of the present local field theory and can be treated as a small perturbation. In the case of the 
former example, it is shown that there are three kinds of pole terms corresponding to the above three in­
variant variables and that these pole terms are identical with those assumed in the pole approximation due 
to Feldman, Matthews, and Salam. The invariant decay amplitude in the case of the latter example becomes 
a constant in the present approach, if the electromagnetic correction is ignored. This is to be contrasted with 
various dispersion relations proposed in the conventional approach in which the mass of the pion is regarded 
as the variable. The dispersion theoretic version of the usual V — A theory of the weak interaction is then 
constructed, in which the invariant decay amplitude (being a constant) is regarded essentially as the weak 
coupling constant. The experimental data concerning these leptonic decays indicate that the weak coupling 
constant defined this way is independent of not only whether the charged lepton is the electron or the ju 
meson, but also whether the decaying particle is the pion or the kaon. 

I. INTRODUCTION 

IN the dispersion theoretic approach to scattering, 
one usually assumes analyticity of invariant scatter­

ing amplitudes with respect to the invariant combina­
tions of the particle four-momenta. These four-momenta 
are subject to the over-all energy-momentum conserva­
tion and all remain on the respective mass shells. One 
then finds two independent invariant variables. If one 
assumes analyticity with respect to both of these 
variables, one obtains double dispersion relations for the 
invariant scattering amplitudes. This was done first 
by Mandelstam.1 

Suppose one applies the same consideration to decay 
of a particle with mass M into two particles with 
masses M' and m, respectively. I t is straightforward to 
define invariant decay amplitudes. However, one finds 
no invariant variables, if all the particle four-momenta 
remain on the respective mass shells and satisfy the 
over-all energy-momentum conservation. To see this, 
let p, pf, and q be the four-momenta2 of the particles 
with masses M, M', and m, respectively. The conditions 
that these momenta are on the respective mass shells 
and satisfy the over-all energy-momentum conservation 

* Work supported by the National Science Foundation. 
1 S. Mandelstam, Phys. Rev. 115, 1741 (1959). 

2 Our notation of the four-momentum p is such that the space 
components are those of the three-momentum p, and the fourth 
component is ipo, where po is the relativistic energy of this particle. 
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are expressed as 

p^--M\ p'2^=-M,2
y <f=-tn?, (1) 

P = P'+<1. (2) 

If one regards two momenta out of these three as 
independent, one finds three independent invariant 
combinations of these momenta. However, because of 
(1) and (2), all these invariants are merely the three-
particle masses. Therefore, in the case of two-body 
decays, one cannot introduce an analyticity assumption 
of the kind which is usually assumed in the case of 
scattering. 

One can still introduce analyticity assumptions for 
two-body decays, if one regards some of the particle 
masses as variables and considers invariant decay 
amplitudes as functions of these variable masses. This is 
what has been done so far in the applications of disper­
sion relations to some of the two-body weak decays. 
In particular, the leptonic decays of pions were analyzed 
by Goldberger and Treiman3 and subsequently by many 
others,4 using the pion mass as the variable. The pionic 
decays of hyperons were also discussed by McCliment 
and Nishijima,5 using the mass of the decaying hyperon 
as the variable. 

The purpose of the present paper is to investigate the 
alternative way of introducing an analyticity assump­
tion, in which the masses of the particles are regarded 
as constants. In this approach, all the particle four-
momenta are strictly on the mass shells given by (1). 
The only way to introduce the variables is then to 
consider the decay matrix element off the energy-
momentum shell, that is the matrix element of the 
original Hamiltonian responsible for the decay with 
respect to the same kinds of particles, the four-momenta 
of which do not have to satisfy the over-all energy-
momentum conservation (2). The invariant decay 
amplitudes then become invariant functions of three 
invariant variables, which can be chosen as s, t, and u, 
given by 

s=-(p'+q)*, t=-(j>-p')\ u=-{p-q)\ (3) 

The number of the independent variables is reduced 
to two, if one requires that 

s+t+u=M2+m*+M'2, (4) 

which includes the physical region in these variables 

s = M2, t=m2, u^M'2. (5) 

The fundamental postulate in the present approach is 
the assumption that the invariant decay amplitudes 
defined off the energy-momentum shell are analytic in 

3 M . L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178 
(1958); 111,354 (1958). 

4 Some of the recent works are M. Ida, Phys. Rev. 132, 401 
(1963) and K. Nishijima, Phys. Rev. 133, B1092 (1964), which 
contain references to all previous work. 

8 E . R. McCliment and K. Nishijima, Phys. Rev, 128, 1970 
(1962). 

s, t, and u except for the cuts and poles which appear 
along the real axes of these variables and satisfy the 
simplest dispersion relations consistent with the above 
singularities. 

We add two remarks to the above discussion. First, 
without the condition (2), one finds generally more 
invariant decay amplitudes than one has with it. 
However, this does not cause any difficulty as long as 
the invariant decay amplitudes are defined in such a way 
that they tend to the invariant decay amplitudes on the 
energy-momentum shell when the physical region is 
approached. The details are explained in Sees. I I and 
I I I . 

Secondly, the condition (4) is equivalent to 

k+p = p'+q, k2=0. (6) 

One can see this, by observing that s+t+u—M2—M2 

— M'2 is equal to— (p—p' — q)2 because of (1) and (3). 
Because of this equivalence, one may have the following 
picture of the present approach. One postulates a 
fictitious massless particle (also neutral and spinless) 
which is annihilated in the two-body decays in such a 
way that the corresponding decay matrix elements 
become the physical decay matrix elements in the limit 
when this fictitious particle carries no energy and 
momentum. However, the present author is not 
inclined to take this picture seriously. The basic 
motivation for requiring the condition (4), which is 
equivalent to (6), is to minimize the amount of un-
physical continuation without excluding the physical 
region (5). For this purpose, the present author finds no 
other way than requiring (4) or (6). For example, one 
could reduce the number of the independent variables 
by putting some of s, t, and u equal to their physical 
values (5). However, there is no a priori criterion for 
which variables ought to be fixed. Besides, one might in 
this way overlook some of the analytic structure of the 
decay amplitude which could otherwise be very useful. 

In Sees. I I and III , we explain in detail how to define 
the invariant decay amplitudes off the energy-momen­
tum shell and how to locate the singularities with 
respect to the invariant variables. We discuss, as 
examples, the pionic decays of hyperons in Sec. I I and 
the leptonic decays of pions and kaons in Sec. I I I . We 
assume in these sections that there exists a weak 
Hamiltonian Hw(%), which is localized in the sense of 
the present local field theory, and can be treated as a 
small perturbation, and is responsible for these weak 
decays in the first order. However, one does not have to 
know the explicit form of Hw{oc). The analyses in 
Sees. I I and I I I refer to the first-order matrix element 
of this weak Hamiltonian, ignoring the electromagnetic 
correction. However, all the strong interactions are 
included. If some of the higher order matrix elements of 
the weak Hamiltonian and/or of the electromagnetic 
correction are included, additional singularities have 
to be added to the invariant decay amplitudes, but 
these higher order corrections do not cause any basic 
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difficulties in formulating the present approach. How­
ever, the existence of a localized weak Hamiltonian 
appears to be a crucial assumption in this approach, 
because the present author does not know how to define 
the decay matrix element off the energy-momentum 
shell when there is no localized weak Hamiltonian. 

In the final section, we summarize the analyses in 
Sees. II and III, with particular emphasis on compar­
ison between the present approach and the conventional 
approach.3-5 

II. PIONIC DECAYS OF HYPERONS 

We assume that a localized weak Hamiltonian 
Hw{oo) is responsible for the pionic decays of hyperon 
in the first order. We use those notations of masses and 
four-momenta which are introduced in Sec. I, except 
that the particle with mass m is identified in this section 
as the pion. In this and the following sections, all the 
state vectors and the operators are in the exact Heisen-
berg picture in which all the strong interactions, Hs(x), 
are included. In the first order of Hw(%), the over-all 
decay matrix element S/i is given by 

•S>*=—*(#', <?| Hw(oc)dx\p) 

= (27ry8(p-p'-q)(-i)(p', q\Hw[0)\p), (7) 

where the integral is the over-all space-time integral.6 

According to the covariance argument, the matrix 
element in the last expression in (7) can be written as 

-i(2q0rKp', q\Hw(0)\p)= {u(p%Fy5+F'-]u(P)} , (8) 

where u(p) and u(pf) are free Dirac spinors, normalized 
as u*u= 1; u(pr) stands for i£(pf)y±\ and F and F' are 
invariant functions of the invariant variables. As is 
explained in Sec. I, the invariant variables are all the 
masses of the particles involved, and, therefore, F and 
F' are constants as long as the masses are regarded as 
constants. The parity-conserving part F accounts for 
the P-wave amplitude in the final state, while the 
parity-violating part F' is essentially the S wave final 
amplitude. 

The decay matrix element off the energy-momentum 
shell is defined as the same as the matrix element in the 
last expression in (7), except that the three momenta p, 
p', and q satisfy (4) or equivalently (6), instead of (2). 
According to the covariance argument, this matrix 
element can be written as 

-i(2q0yi*(p',q\Hw(O)\p) 
= (u(p'){F(s,t,u)y5+F'(s,t,u) 
+iy-ktG(s,t,u)y5+G'(s,t,un}u(p)), (9) 

where s, t, and u are defined by (3) and all the F's 
and G's are invariant functions of s, t, and u. The 

expression (9) contains four invariant decay amplitudes 
compared with two in the expression (8). However, the 
F's and G's are defined in (9) in such a way that the 
F's in (9) tend to the F's in (8) as k —>0. In other words, 
the following relations hold: 

F=F(s=M2, t=m\ u=M'2), 

F'=F'(s=M2,t=m2,u=Mf2). (10) 

Therefore, one does not have to consider the G's in (9). 
The fundamental postulate in the present approach is 
that the F's in (9) are analytic in s, t, and u except for 
poles and cuts along the real axes of these variables. 

We assume that the above singularities can be located 
according to the usual heuristic argument. Thus, one 
first eliminates7 the pion in the decay matrix element off 
the energy-momentum shell. Ignoring the electro­
magnetic correction, one obtains 

~i{2q^2{p\q\Hw{G)\p) 

8HW(0) 
= ~W\ 

5^(0) 
\p)-(p'\ dxr\——9Hw(0) 

J I 8<t>Hx) 5<f>f(x) 

Xe-^lp), (11) 

where <j>(x) is the pion field operator and T stands for 
the time-ordered product. This time-ordered product 
can be written as 

\BHs(x) 
T\—,Hw(0) 

[8<p(x) 

= Hw(0)——+r,(t) 
5tf(x) 

•dHs(x) 

L5</>t(x) , 
Hw(0) , (12) 

where t\(t) is unity when />0 and zero when t<0, and 
the last bracket is the usual commutator. The first term 
in (12) does not contribute in (11) because 

(p ' | / dxHw (0) 
8Hs(x) 
— e 
8<j>\x) 

°\P) 

= Z(2v)45lp-q-pn){p'\Hw(0)\n) 
n 

5HS(0) 
X<n|——1#>=0, (13) 

5^(0) 

where the sum over n is over the complete set of the 
eigenstate \n) of the total strong Hamiltonian £thus 
excluding Hw(x)~\ and pn in the corresponding energy-
momentum eigenvalue. The last equality is due to the 
stability of hyperons against all the strong interactions. 
If one introduces the same complete set expansion also 
to the second term in (12), one can perform the space-

6 The units h=c—l are used throughout this paper. 7 F. E. Low, Phys. Rev. 97, 1392 (1955). 
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time integral in (11). The result is 

8Hw(P) { 8HS(0) S ( p n - p ' - q ) 
- i ( 2 j 0 W , q\Hw(0)\P)=-i(p'\---7:-\p)-i(2Try x\tf\——\n)(n\Hw(0)\p}-

50t(O) «*t(Q) po+qo—pno+ie 

+(p'\Hw(0)\n)(n\ — \p)- (14) 
50f(O) po—qo—pno—ie) 

where e is an infinitesimal positive real number. 
According to the usual heuristic argument, the singularities of the invariant decay amplitudes are entirely due to 

the energy denominators in (14). Thus, one can locate all the singularities in s by looking at the mass spectrum 
of the intermediate state \n) which contributes to the first sum in (14), while the same consideration regarding 
the second sum in (14) enables one to locate all the singularities in u. 

However, the expression (14) does not allow one to locate the singularities in /. For this purpose, one eliminates7 

the nucleon (or A in the 2 decay) in the decay matrix element off the energy-momentum shell. The analogous 
procedure leads one to the expression 

-i(p\q\Hw(0)\P)=-i*(P')(q\-T7Zr- I ^ W ^ E \*(P')(q\— \n)(n\Hw(0)\p)~ 
W(0) ¥ ( 0 ) po'+qo—pno+ie 

5HS(0) S (p n - -p+p ' ) 
+(q| flV(0) | n)u{p')(n| — 1 p)-

8$(0) po—po—pno—ie J 
(15) 

where rp(x) = \l/^(x)y4 and \p(x) is the nucleon (or A in 
the 2 decay) field operator and other notations are the 
same as those in (14). The second sum in the expression 
(15) enables one to locate all the singularities with 
respect to L 

According to the above heuristic argument, poles are 
due to the single-particle intermediate states which 
contribute to the sum in (14) and (15). One thus finds 
that there can be poles in .? because of the intermediate 
nucleon (or 2 in the 2 decay), and in u due to the 
intermediate hyperon, and also in t by virtue of the 
intermediate kaon. One also finds three cuts given by 
«?>Si, u>Ui, and t>h, where si, Ui, and h are the lowest 
total mass squared of the intermediate states which 
contribute to the respective sums in (14) and (15) and 
involve at least two particles. 

The residues of the poles depend upon various strong 
and weak form factors. For example, the residue of the 
s pole includes the invariant form factors defined by 

(p'\dH8(0W(0)\p") 

-ig{z)[u{p,)y,u{pn)'}, (16) 

(p"\Hw(0)\p)={u(p'%a(z)+a'(z)y^u(p)}, (17) 

with z= - (p'-p")2 in (16) and z= - (p"-p)2 in (17). 
The invariant form factors, g(z), a(z), and a!(z) are 
real, if Hs(x) and Hw(%) are time-reversal invariant. 
With (16) and (17), one can carry out the sum over the 
spin of the intermediate nucleon (or 2J in the 2 decay) 
implied in the sum over n in (14). If one introduces 
covariant notation in the resulting expression of the 

term in (14) which gives rise to the s pole, one obtains 

-Wq,yi\p',q\Hw{0)\p) 

= [£(^)/{s-Mi)-](fl(p'){ (M0+M)a(0)y6 

+ (Mo-M)a'(0)+iykla(0)y6+a'(0)-]}u(p)) 

+ •••, ( 1 8 ) 

where Mo is the mass of the intermediate nucleon (or 2 
in the 2 decay) and dots stand for the terms which do 
not have the pole in question. By comparing (18) with 
(9), one finds 

F(s,tiu) = l(MQ+M)g(?n*)a(0)/(s-Mo2)l+-

F'(s,t,u) = Z(Mo-M)g(m>)af(0)/(s-Mo2n+' (19) 

where dots stand for the terms without the s pole. 
If one applies the same consideration to the term in 

(14) which gives rise to the u pole, one obtains 

F(s,l,u) = l(Mo+M')g(m*MO)/(u-M<?)l+-

F'(s,t,u) = l(M0-M')g(m*)a'(0)/(u-M0*)~]+ • (20) 

where dots stand for the terms which do not have the u 
pole. In (20), Mo is the mass of the intermediate hyperon 
responsible to the u pole and the definitions of g(m2), 
a(0), and a ;(0) are the same as those in (16) and (17). 

Concerning the term in (15) which gives rise to the 
t pole, one first observes the following identity relation 
which is valid when p~pr-\-qr. 

8HS(0) 

m'W\——\P)= 
1 dHs(0) 

<P'\—77T l#>> (21) 
(2(?o

,)1/2 ^/c+(0) 
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where $ K ( # ) is the kaon field operator. The identity 
relation (21) can be proved easily by eliminating7 the 
kaon on the left-hand side and the nucleon (or A in the 
S decay) on the right-hand side in (21). Therefore, one 
introduces the invariant form factors by putting 

dHs(0) 1 
u{pf)(q'\-~_ \p) = —igK{z)[u^)y,u{p)1y (22) 

^ ( 0 ) (2go01/2 

(q\Hw®)W)~-
1 

(4WoO 
-aK(z), 

1/2 
(23) 

with z=-(p'-p)2 in (22) and z=-(q-q;)2 in (23). 
Equation (22) is correct at least for the purpose of 
finding the residue of the t pole. In (22) and (23), 
gic(z) and QK(Z) are real if Hs(%) and Hw(oc) are time-
reversal invariant. Upon substituting (22) and (23) 
into the term in question in (15), one finds, after 
introducing covariant notation, that 

F(s,t,u) = lgK(mK
2)aK(0)/(t~mK

2)^+ • • (24) 

where MK is the kaon mass and dots stand for the terms 
which do not have the t pole. The absence of the t pole 
in Ff(s,t,u) is simply due to (23) in which the parity-
violating part of Hw{oc) has no contribution to the 
matrix element in (23). 

In addition, one obtains (19) also from the first sum 
in (15). This can be shown with the help of the identity 
relation (21). 

All the preceding analyses which begin with Eq. (11) 
are valid, for any choice of the independent variables. 
Thus, one finds the same poles with the same residues 
and the same cuts, regardless of whether the condition 
(4) or equivalently (6) is required. However, the 
situation changes if one chooses the masses of the 
particles as variables, with the over-all energy-momen­
tum conservation (2) required. In this case, 5 in (19) 
is M2 and u in (20) is M'2. Since M and Mf appear also 
in the numerators in (19) and (20), one has to conclude 
that F;(s,t,u) has neither an s pole nor a u pole, unless 
the invariant form factors g(z) and a' (z) become singular 
at these points. However, it is contrary to the usual 
heuristic argument to assume such singular behavior 
in the invariant form factors. I t is a simple matter to 
check that the pole terms in (19), (20), and (24) are 
those which are assumed in the pole approximation due 
to Feldman, Matthews, and Salam,8 if our g's and a's 
are identified with their vertex constants. 

One notices that g{m2) in (19) and (20) is what one 
calls the coupling constant of the pion with baryons in 
the dispersion relations for the pion-baryon scattering 
amplitudes. The same remark applies also to gK^K2) 
in (24). Therefore, it is very natural to regard the a's 

8G. Feldman, P. T. Matthews, and A. Salam, Phys. Rev. 
121, 302 (1961). 

in (19), (20), and (24) as weak coupling constants of 
some type. The usefulness of defining the weak coupling 
constants this way is discussed in Sees. I l l and IV. 

There is a simple graphical way to enumerate the 
singularities of the invariant decay amplitudes. First, 
one introduces the fictitious particle mentioned in 
Sec. I to the intitial state, in addition to the decaying 
particle. The decay diagram then consists of four 
particles, rather than the original three. In order to 
locate the singularities with respect to s, /, aud u, one 
proceeds exactly the same way as one usually does in 
the case of scattering, except that the vertices which 
the fictitious particle end up with are always the weak 
vertices, and the other vertices are to be regarded as 
the strong ones. This rule follows directly from the 
expressions (14) and (15). 

One of the fundamental postulates in the present 
approach is that the invariant decay amplitudes 
satisfy the simplest dispersion relations consistent with 
the above singularities. Therefore, we assume that 
F(s,t,u) and F'{s,t,u) satisfy the following double 
dispersion relations: 

F(s,t,u) 

Rs 

s—so 

+JJ 

Rt Ru 1 
1 ! I 1 1 1 

t— to U~UQ IT2 

•°° p2t{t/,uf)dt/du/ 

hui (t' — t)(u' — u) 

" f [™ pi2(s'/)ds'dt' 

U J.ltl(s'-s)(t'-t) 

f T00 pzi{uf/)dufdsf-\ 

J Juisi (u' — u)(sf — s)J 

(25) 

in terms of the obvious notation and a similar expression 
for F'(s,t,u). In (25), F(s,t,u) is assumed to have one 
pole in each of s, t, and u, since the exact number of 
poles is completely irrelevant in the following discussion. 

One finds from (25) the limit of F(s,t,u) when one of 
the variables become infinite while the other remains 
finite. For example, when s—> <x> with t fixed, one 
obtains from (25) that 

lim [F(s,t,u)']tnxea = Rt/tL—to), (26) 

provided that the double integrals in (25) converge 
individually for all values of s. One obtains similar 
expressions as (26) when other limits are considered. 
When all of s, t, and u become infinite, one obtains also 
from (25) that 

lim F(s,t,u) = 0. 
a,t, u—»oo 

(27) 

The single dispersion relations for F(s,t,u) can also 
be inferred from (25). For example, when F(s,t,u) is 
regarded as a function of s with t fixed, (26) implies 
that F(sytjU) approaches a real finite number at infinity 
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in the 5 plane with I fixed. Therefore, F(s,l,u) satisfies 

Rs Rt Ru 
F(s,t,u) = H + • 

s—Sa t—to u—«o 

l r p Pl(s',t) f P3(u',t) -] 
+ - ds'+ du' , (28) 

irLJSl s ~s Jui u—u J 

in which the limit (26) is used.9 In fact, one obtains 
(26) also from (28) in the limit when s approaches 
infinity, provided that the integrals in (28) converge 
individually for all s. One can show9 that the discontinui­
ties in (25) and (28) are related, for example, by 

lr rpi2(s'/) r°p3 i«0 i 
Pi(s',t)=- \ — dt'-l — du'\, (29) 

7rL J tl t —/ J U1 t —t J 

where tf in the last integral stands for M2+Mf2+m2 

-u'-sf. 

III. LEPTONIC DECAYS OF PIONS AND KAONS 

The leptonic decays of negative pions and kaons 
are considered in this section. The notation which is 
introduced in Sees. I and I I is used, except that now the 
particle with mass Mf is identified as the neutrino. I t is 
assumed that the neutrino mass is zero (M' — O) and 
that the neutrino has the negative helicity. The question 
of whether or not the neutrino is the same in these 
leptonic decays is irrelevant. What is important to the 
following discussion is that a local weak Hamiltonian 
Hw(%) is responsible for these leptonic decays in the 
first order, and the leptons participate only in the weak 
interaction. 

The over-all decay matrix element is given also by 
(7) in the first order of Hw(x). The matrix element in 
the last expression in (7) can, in this case, be written as 

-i(2poy'Kp',q\Hw(0)\p) 

= lu(q)F(l+yM-p')l, (30) 

compared with (8) in the previous case. The difference 
between (8) and (30) is simply due to the requirement 
that the neutrino has the negative helicity. The constant 
F is dimensionless and is real if Hw(%) is time-reversal 
invariant. The decay matrix element off the energy-
momentum shell is defined in exactly the same way as in 
Sec. I I . This matrix element can be written also as (9), 
except that G(s,t,u) and Gf(s,t,u) are the same in this 
case. The relation (10) holds also in this case. 

In order to locate the singularities of F(s,t,u), it is 
the most convenient to eliminate7 the leptons in the 
above decay matrix element. Because of the fact that 
the leptons participate only in the weak interaction, 
one obtains, when the electromagnetic correction is 

9 Those who are interested in seeing the details of this arugment 
are referred to M. Sugawara and A. Kanazawa, Phys. Rev. 123, 
1895 (1961). 

ignored, 

-i(2p0yi*(p',q\Hw(0)\p) 

= -i(2p0yi*[u(q)(0\PHw(0)/ 

X«if(0)^,(0) | # > « ( - # ' ) ] , (31) 

'.) where \pv(x) is the neutrino field operator and ^(x) 
is that of the charged lepton. Since the matrix element 
on the right-hand side of (31) depends only on the 

s four-momentum p, the covariance argument leads to 
:S 

e -i(2p0yi\0\dWw(0)/8i(0)5M0) \p) 
i- = J F i ( l + 7 » ) + i ? i , ( l - 7 5 ) 

- ( * 7 ^ / J f ) { F j ( l + 7 . ) + F , ' ( l - 7 * ) } , (32) 

,\ where M is inserted in the last term to make all the 
F's dimensionless. In (32), all the F's are invariant 
functions of p1 and, therefore, are constants as long as 

f2 M is regarded as a constant. From (31) and (32), 
one obtains 

-i(2p0yi*(p',q\Hw(O)\p) 

= {u(q)lF!+ (m/M)F2+ (vyk/M)F{\ 

J X(l+7.)«.(-f)}, (33) 
e where M' is put equal to zero. 
s By comparing (33) with (9), one finds that F(s,t,u) is 
d a constant and, thus, equal to F in (30): 

e F (s,t,u) = F i + (m/M)F2=F. (34) 

Therefore, according to the present approach, the 
invariant decay amplitude F(s,t,u) satisfies no (non-

. trivial) dispersion relation, in contrast with various 
dispersion relations3-5 proposed in the conventional 
approach. The basic reasons for the result (34) are that 

^ the leptons participate only in the weak interaction 
and that the electromagnetic correction is ignored. 

In the dispersion theoretic approach to scattering, 
various constants in the dispersion relations (the 

|N residues in the pole terms and the subtraction constants) 
are regarded as coupling constants of some type. 

e Similarly, in the dispersion theoretic approach to the 
.t weak interaction, some constants in the dispersion 
t relations for the invariant decay amplitudes ought to be 
il identified as weak coupling constants of some kind. 

Since the invariant decay amplitudes themselves are 
a constants in the leptonic decays of pions and kaons, it 
), is quite natural in the present approach that one 
s regards these invariant amplitudes as essentially the 

weak coupling constants. 
s One here observes that the usual V-A theory of the 
e weak interaction predicts that there is in (32) only the 
X term with F2 and that this constant F2 is independent 
I, of whether the charged lepton is the electron or the /x 
is meson. One can construct a dispersion theoretic version 

of the usual V-A theory, by defining the weak coupling 
it constant C by 
5' F=(m/M)C, (35) 
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and requiring that C is independent of whether the 
charged lepton is the electron or the \x meson. This 
version of the usual V~A theory makes the same 
prediction as the latter regarding the following ratios: 

w (x -> e+ v)/w (w -> M + v) = 1.28 X 10~4, 

w(K->e+v)/w(K->v+i>) = 0.257X10-*. (36) 

However, the above version is more general than the 
usual V—A theory because the former does not neces­
sarily require the usual form of Hw(x) but is valid 
under a wider class of Hwioc). 

According to the usual V—A theory, it would not be 
a meaningful question to ask if the weak coupling 
constant C, defined in (35), is also independent of 
whether the decaying particle is the pion or the kaon. 
However, this question is of direct significance according 
to the present approach, because this concerns directly 
the universality of the weak interaction. We have, 
therefore, determined the empirical values of the two 
weak coupling constants CT and CK, defined in exactly 
the same way in the leptonic decays of these two 
particles, respectively. Using the available data concern­
ing the /x-mesonic decay modes, we have found that 

CK/C^ 0.97, (37) 

CV=1.50X10-7 . (38) 

Presumably the most ambiguous experimental figure 
in determining the above ratio is that of the branching 
ratio for K —> n+v. The value in (37) is based upon 64% 
determined by Roe et al.10 All the previous values10 of 
this branching ratio are consistently lower than 64% 
and make the figure in (37) smaller roughly by 5%. 
According to the quoted uncertainties of the experi­
mental data which are necessary to determine the ratio 
CK/CIT, the figure in (37) is uncertain by not more than 
roughly 2%. This leaves a discrepancy from unity of 
this ratio of about 1%. 

Besides these experimental uncertainties, there are 
some theoretical corrections. Presumably the most 
important of all is the electromagnetic correction. With 
the electromagnetic interaction included on the left-
hand side of (31), one obtains another term on the 
right-hand side of (31), upon eliminating7 the leptons, 
due to the fact that the charged lepton participates also 
in the electromagnetic interaction. This additional 
term gives rise to some analytic structure of the 
invariant decay amplitude F(s,t,u). Therefore, it would 
no longer be adequate to regard the values of F(s,t,u) in 
its physical region as essentially the weak coupling 
constant. I t would still be meaningful to define the 
weak coupling constant referring only to the term 

10 B, P. Roe, D. Sinclair, J. L. Brown, D. A. Glaser, J. A. Kadyk, 
and G. H. Trilling, Phys. Rev. Letters 7, 346 (1961). According to 
Roe, a new determination of this branching ratio is now in progress 
based upon a larger number of events. According to Roe, however, 
the branching ratio is not expected to differ very much from 64% 
(private communication). 

which appears on the right-hand side of (31). In other 
words, the weak coupling constant would have to be 
determined not directly from the observed decay rate 
but rather after the electromagnetic correction is 
subtracted. 

In spite of these uncertainties which are mentioned 
above, it is very tempting to investigate whether the 
weak interaction is universal, in the sense that the weak 
coupling constants defined as outlined above become the 
same in the other weak decays also. For example, we 
have defined, in the case of the pionic decays of hyper-
ons, the various constant a's which appear in the pole 
terms (19), (20), and (24) of Sec. I I . These a's are not 
yet dimensionless and, therefore, cannot directly be 
compared with the c's in this section. The purpose of a 
subsequent paper11 is to show that the available data 
actually suggest that these a's, after having been made 
dimensionless, are all numerically the same as that 
in (38). 

IV. SUMMARY AND DISCUSSION 

We have discussed in the previous sections how one 
can introduce an analyticity assumption for the two-
body weak decays without regarding the masses of the 
particles as variables. For this purpose, one first defines 
the decay matrix element off the energy-momentum 
shell. This introduces the invariant decay amplitudes 
off the energy-momentum shell which are the invariant 
functions of the invariant variables s, t, and u defined 
by (3). One then assumes as the fundamental postulate 
in the present approach that these invariant decay 
amplitudes are analytic in s, t, and u except for the 
poles and cuts which occur along the real axes of these 
variables and behave in possibly the simplest way at 
infinity with respect to these variables. 

The above singularities can be located more or less 
in the same way as they are in the case of scattering. 
This is because one is in the present approach off the 
energy-momentum shell and, thus, one has an extra 
energy momentum which can formally be attributed to 
the fictitious particle present initially, in addition to the 
decaying particle. In other words, one has, so to speak, 
four particles to deal with. This analogy is obvious in 
the diagrams of Fig. 1. 

According to the definition (3), the variables s, t, and 
u are the so-called total energy squared in the three 
channels appropriately defined. In the conventional 
approach,3"5 these are simply the masses of the particles 
involved. For this reason, one may think, offhand, that 
the difference between the present approach and the 
conventional one is more or less a matter of terminology 
or interpretation, or the difference is, after all, very 
small even if it exists. This is correct in some sense, but 
there are rather surprising differences in some of the 
consequences of these two approaches. 

11 M. Sugawara and T. Sakuma, following paper, Phys. Rev. 135, 
B260 (1964). 
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In the case of the pionic decays of hyperons discussed 
in Sec. II, the usual heuristic argument implies that 
there should be no parity violation in the pole approxi­
mation in the conventional sense, while the pole 
approximation in the present approach is identical to 
the pole approximation due to Feldman, Matthews, and 
Salam.8 If this pole approximation8 is valid to some 
extent, one may say that the present approach is more 
useful than the conventional one in the case of the 
pionic decays of hyperons. 

A very remarkable difference between these two 
approaches arises in the case of the leptonic decays of 
pions and kaons. It is shown in Sec. I l l that the 
invariant decay amplitude remains a constant, even off 
the energy-momentum shell. This means that one 
obtains no (nontrivial) dispersion relation in the present 
approach, in contrast with the various dispersion 
relations3-5 proposed in the conventional approach. 

The present approach differs also from the conven­
tional one in interpreting the empirical fact that the 
ratio in (37) is almost unity. This can only be a pure 
accident according to the conventional approach, 
because these c's in (37) have complicated structures 
which are expressed by various dispersion relations.3-5 

On the other hand, the equality of these c's in (37) 
implies the universality of the weak interaction accord­
ing to the present approach, because these c's in (37) 
are the genuine constants which can be identified as the 
weak coupling constants. According to Sec. I l l , these 
c's in (37) are also independent of whether the charged 
lepton is the electron or the fj, meson. Therefore, the 
present approach is not only simpler but also more 
useful than the conventional one, as far as the leptonic 
decays of pions and kaons are concerned. 

The above universality of the weak interaction is 
further extended in a subsequent paper11 to the pionic 
decays of hyperons. The various constants a's which 
appear in the pole terms (19), (20), and (24) are first 
made dimensionless by introducing appropriate mass 
units. The above universality then implies that all 
these a's, after having been made dimensionless, are 
numerically the same as the c's in (37) and (38). It is 
found in the subsequent paper11 that the available data 

(a) (b) (c) 

FIG. 1. Diagrams (a), (b), and (c) indicate those intermediate 
states, denoted by n, which give rise to the singularities with 
respect to s, t, and u, respectively. The vertices with W within 
circles stand for the weak vertices, while those with S are the 
strong ones. The dashed lines denoted by k indicate the fictitious 
particle mentioned in Sec. I of the text. 

are actually consistent with the above universality as 
long as the pole approximation8 is valid. 

Therefore, it appears that the present approach is 
more useful than the conventional one as far as the 
pionic decays of hyperons and the leptonic decays of 
pions and kaons are concerned. However, the conven­
tional approach has made a successful correlation3-5 of 
the leptonic decays of pions with the fi decay of nucleons. 
Therefore, it would not quite be until one works out the 
corresponding correlation according to the present 
approach that one can really tell which approach is 
more useful. The (3 decay of nucleons has not yet been 
fully investigated along the line of the present approach. 

Besides the analyticity assumption, we assume in the 
present work some other basic assumptions. The basic 
assumptions are summarized at the end of the introduc­
tion. As is stated there, the existence of a localized 
weak Hamiltonian Hw{%) appears to be a crucial 
assumption, because the present author does not know 
how to formulate the present approach without this 
assumption. The present approach can be formulated 
without some of the other basic assumptions and/or even 
if the weak boson exists. However, if the weak boson 
exists, almost all the details given in Sees. II and III 
have to be rederived because all the decays discussed 
there become of the second order with respect to H •&(%)> 


